Interdisciplinary Research Groups

The multidisciplinary research teams of UPR and PENN faculty integrate undergraduates and HS students into extended research experiences that will lead to publishable results. Importantly, faculty also integrates their research topics, techniques, and results into laboratory experiences, courses, and outreach activities.


Synthesizes, characterizes, and manipulates optoelectronic materials to gain fundamental understanding of transport mechanisms in these materials for potential device applications. The projects include the study of new device structure combinations of single-atomic-layer materials (MoS2, etc.) and nanofibers of electro-active polymers that hold potential for transformative discoveries in chemical detection and energy harvesting.


Explores nanoscale interactions of macromolecules with soft and hard interfaces with the long-range goal of assembling nanomaterials into macroscopic structures with designed properties and functionality. The study of nanoparticle-protein interactions represents both a fundamental problem, as well as a research area for which the PENN-UPR team is uniquely poised to attack in terms of nanoparticle synthesis, protein chemistry, spectroscopy, and theory.


Martínez, Luis M., Pinto, Nicholas J., Naylor, Carl H., Johnson, A.T. Charlie (2016). MoS2 based dual input logic AND gate, AIP Advances 6, 125041; doi: 10.1063/1.4971857.

Zimbovskaya, Natalya A. (2016). Communication: Length dependent thermopower of single molecule junctions, The Journal of Chemical Physics 145, 221101; doi: 10.1063/1.4972002.

Martínez, Luis M., Nieves, Cesar, Meléndez, Anamaris, Ortiz, Margarita, Ramos, Idalia, Pinto, Nicholas J. (2016). Aliphatic alcohol vapor sensors based on polyaniline coated carbon spheres, Proc. 10th Ibero-american Congress on Sensors, Viña del Mar, Chile.

Nieves, Cesar, Meléndez, Anamaris, Pinto, Nicholas J., Ramos, Idalia (2016). Sensor response of carbon spheres/ polymer composites to aliphatic alcohol vapors, Proc. 10th Ibero-american Congress on Sensors, Viña del Mar, Chile.

Ortiz, Deliris N., Vedrine, Josee, Pinto, Nicholas J., Naylor, Carl H. & Johnson, A. T. Charlie (2016). Monolayer WS2 crossed with and electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode, Mater Sci Eng B 214, 68-73; doi: 10.1016/j.mseb.2016.09.003.

Nieves, C., Meléndez, Pinto, N. J. & Ramos, I. (2016). Facile fabrication of carbon spheres/n-Si junction diodes based on sucrose, J Mater Sci: Mater Electron 27, 13044; doi: 10.1007/s10854-016-5445-x.

Nieves, C., Meléndez, A., Ramos, I., Pinto, N. J. & Zimbovskaya, N. (2016). Electron transport mechanisms in polymer-carbon sphere composites, J. Appl. Phys. 120, 014302; doi: 10.1063/1.4955166.

Nieves, C., Ramos, I., Pinto, N. J. & Zimbovskaya, N. (2016). Electron transport mechanisms in polymer-carbon sphere composites, arXiv:1604.02365v1 [cond-mat.mes-hall] 8 Apr 2016.

Serrano, W., Meléndez, A., Ramos, I. & Pinto, N. J. (2016). Poly(lactic acid)/poly(3-hexylthiophene) composite nanofiber fabrication for electronic applications. Polym. Int. 65(5), 503-507. doi: 10.1002/pi.5081.

Wang, H., Huang, K., Jesús, M. D., Espinosa, S., Piñero-Santiago, L. E., Barnes, C. L & Ortiz-Marciales, M. (2016). Synthesis of enantiopure 1,2-azido and 1,2-amino alcohols via regio- and stereoselective ring-opening of enantiopure epoxides by sodium azide in hot water. Tetrahedron: Asymmetry 27 (2-3), 91-100. doi:10.1016/j.tetasy.2015.12.002.

Zimbovskaya, N. A. (2016). Seebeck effect in molecular junctions. J. Phys.: Condens. Matter, 28(18), 183002. doi:10.1088/0953-8984/28/18/183002.

Negrón-Marrero, P. & López-Serrano, M. (2016). Minimal configurations for finite molecular arrays, arXiv:1603.01899v1 [math-ph] 7 Mar 2016.

Zimbovskaya, N. A. (2016). Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron–phonon interactions. J. Phys.: Condens. Matter. 28, 295301. doi: 10.1088/0953-8984/28/29/295301.

This material is based upon work supported by the NSF under Grant NO. DMR-1523463.